翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

flux qubit : ウィキペディア英語版
flux qubit

In quantum computing, flux qubits (also known as persistent current qubits) are micrometer sized loops of superconducting metal interrupted by a number of Josephson junctions. The junction parameters are engineered during fabrication so that a persistent current will flow continuously when an external flux is applied. The computational basis states of the qubit are defined by the circulating currents which can flow either clockwise or counter-clockwise. These currents screen the applied flux limiting it to multiples of the flux quantum and give the qubit its name. When the applied flux through the loop area is close to a half integer number of flux quanta the two energy levels corresponding to the two directions of circulating current are brought close together and the loop may be operated as a qubit.
Computational operations are performed by pulsing the qubit with microwave frequency radiation which has an energy comparable to that of the gap between the energy of the two basis states. Properly selected frequencies can put the qubit into a quantum superposition of the two basis states while subsequent pulses can manipulate the probability weighting that the qubit will be measured in either of the two basis states, thus performing a computational operation.
== Fabrication ==

Like most mesoscopic devices such as solid state qubits, single-electron transistors, quantum dots, ''etc.'', flux qubits are fabricated using techniques similar to those used for microelectronics. The devices are made on silicon wafers using electron beam lithography and metallic thin film evaporation processes. To create Josephson junctions a technique known as shadow evaporation is normally used; this involves evaporating the source metal alternately at two angles through the lithography defined mask in the electron beam resist. This results in two overlapping layers of the superconducting metal, in between which a thin layer of insulator (normally aluminum oxide) is deposited.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「flux qubit」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.